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[1] The use of narrow-beam, ground-based active remote sensors (such as cloud radars
and lidars) for long-term observations provides valuable new measurements of the vertical
structure of cloud fields. These observations might be quite valuable as tests for numerical
simulations, but the vastly different spatial and temporal scales of the observations and
simulation must first be reconciled. Typically, the observations are averaged over time and
those averages are claimed to be representative of a given model spatial scale, though the
equivalence of temporal and spatial averages is known to be quite tenuous. This paper
explores an alternative method of model evaluation based on the interpretation of model
cloud predictions as probabilistic forecasts at the observation point. This approach requires
no assumptions about statistical stationarity and allows the use of an existing, well-
developed suite of analytic tools. Time-averaging and probabilistic evaluation techniques
are contrasted, and their performance is explored using a set of ‘‘perfect’’ forecasts and
observations extracted from a long cloud system model simulation of continental
convection. This idealized example demonstrates that simple time averaging always
obscures forecast skill regardless of model domain size. Reliability diagrams are more
robust, though scalar scores derived from the diagrams are sensitive to the forecast
probability distribution. Forecasts by cloud system and weather forecasting models then
provide examples as to how probabilistic techniques might be used in a variety of
contexts. INDEX TERMS: 3337 Meteorology and Atmospheric Dynamics: Numerical modeling and data

assimilation; 3360 Meteorology and Atmospheric Dynamics: Remote sensing; 3394 Meteorology and

Atmospheric Dynamics: Instruments and techniques; KEYWORDS: model evaluation, probabilistic verification,

cloud radar

Citation: Jakob, C., R. Pincus, C. Hannay, and K.-M. Xu (2004), Use of cloud radar observations for model evaluation: A
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1. Comparing Observations at a Point to Model
Forecasts

[2] The last decade has seen an enormous increase in the
diversity and ubiquity of long-term active remote sensing
sites. These observatories typically contain a suite of
colocated passive and active remote sensors, including
millimeter wavelength cloud radars and lidars, that can be
combined to provide information on cloud microphysical
properties [e.g., Platt, 1979; Mace et al., 1998a, 2001;
Sassen and Mace, 2002]. The data provided by these sites
is unique: active sensors provide valuable information on
the vertical structure of clouds and the atmosphere, while

the long-term records available from some sites sample an
enormous range of conditions.
[3] Long time-series from ground-based sites offer new

opportunities for evaluating the treatment of clouds in
numerical models of the atmosphere. Models range in scale
and resolution from global models used for weather and
climate prediction (with resolutions of tens to hundreds of
kilometers) to cloud system models encompassing domains
a few hundred kilometers across at resolutions of a few
kilometers. Model predictions may be statistical (like cli-
mate projections, which are boundary value problems) or
deterministic (like weather forecasts, which are initial con-
dition problems), depending on the ways large-scale obser-
vations are used to initialize or force the model. Different
kinds of predictions may require different techniques of
evaluation, but no matter what kind of prediction is being
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tested there is an inherent mismatch between the spatial and
temporal scales of models and ground-based observations.
Many active ground-based instruments make frequent
observations of a vertical pencil beam through the atmo-
sphere at high vertical resolution [e.g., Clothiaux et al.,
2000]. Models, on the other hand, predict the distribution of
cloud properties within much larger domains, be they a
single grid column in a global model or the full domain of a
cloud system model.
[4] How can we robustly compare measurements at a

point to instantaneous predictions in a large domain? The
usual answer is to leave the model predictions untouched
and temporally average the observations, assuming that
advection over time provides the same statistics as would
be gathered from observing instantaneous spatial variability
[e.g., Barnett et al., 1998]. The averaging time is chosen to
match the model domain size based on the cloud propaga-
tion speed. In principle, averaging intervals could vary
according to the propagation speed with time, height, and
the size of the model domain being evaluated, but this is
rarely done in practice; most studies average over fixed
time-intervals, even though the resulting statistics can
depend significantly on which interval is chosen [e.g.,
Hogan and Illingworth, 2000].
[5] This paper explores a complementary route to model

comparison with point-wise observations: leaving the obser-
vations untouched and interpreting model predictions as
probabilistic forecasts at the observation point. This rethink-
ing opens up new avenues for model evaluation, since a rich
suite of techniques related to probabilistic forecasts already
exists and is used extensively by the ensemble forecasting
community (among others). Probabilistic verification is
restricted to forecasts (predictions of specific events at
specific times) of quantities for which statistical information
is available within the domain but requires fewer ad hoc
assumptions than does time averaging.
[6] This exploratory study contains two parts. The first

(sections 2 and 3) contrasts time-averaging and probabilistic
evaluation methods and examines their performance in an
idealized context. The second (section 4) shows examples
of using probabilistic techniques to test forecasts by various
classes of models against a set of remote sensing observa-
tions. Issues resulting from these findings are discussed in
section 5.

2. Time-Averaging and Probabilistic Techniques
for Using Point Measurements

[7] The general evaluation problem at hand is comparing
point observations taken frequently in time to model pre-
dictions of the same (or another, closely related) quantity.
Our goal is to use the observations to quantitatively evaluate
the model’s forecasts so we can tell, for instance, if a change
to the model has resulted in better predictions. As a concrete
example we consider forecasts of total (vertically projected)
cloud cover within some model domain, which we would
like to evaluate using a time series of observations of the
presence or absence of cloud above a point within the
domain, as might be observed by cloud radars.
[8] Typically, such point observations of cloud occur-

rence are averaged in time to produce a time series of total
cloud cover [e.g., Hogan et al., 2000] varying from zero to

one that is directly comparable to the model prediction. The
model and observational time series can then be compared
with statistical measures such as mean error, root-mean
square error, and correlation. We refer to this as the time-
averaging approach.
[9] Alternatively, model predictions of total cloud cover

at each time may be treated as a probabilistic forecast. If we
assume that clouds are distributed randomly throughout the
model domain, we can interpret a cloud cover forecast as
being the probability that, at any observation point within
the domain, there will be cloud overhead at the forecast
time. Forecasts are deemed successful if cloud is observed
P% of the times when the forecasts of cloud cover is P%.
The degree of success can be quantified using the methods
usually applied to the evaluation of probabilistic forecasts
and ensemble prediction systems [e.g., Mullen and Buizza,
2001; Buizza et al., 1999; Toth et al., 1997]. We refer to this
as probabilistic model evaluation.
[10] We focus here on two specific measures: reliability

diagrams and the relative operating characteristics (ROC)
diagram, as well as the scalar scores associated with each
diagram. To construct these diagrams, observations are sorted
according to the model forecast of total cloud cover and the
observations in each class are considered in aggregate.
Skillful forecasts are those in which the correct value is
predicted at the correct time; the ROC scores emphasize
agreement in timing, while the reliability diagram scores
account for mistakes in magnitude as well as timing. (A more
complete introduction to reliability and ROC diagrams and
their associated scalar scores can be found in Appendix A.)
[11] The central advantage to probabilistic evaluation

methods is that the observations do not need to be averaged
in any way, which is especially appealing when point
observations are used. However, because the verifying
observations are analyzed according to the forecast proba-
bility, probabilistic evaluation methods can only be applied
to predictions that are statistical in nature, i.e., those in
which the distribution of the forecast quantity is resolved to
some degree. When evaluating contemporary large-scale
models, point measurements are usually compared to single
columns, in which case cloud cover and variables related to
its vertical overlap (e.g., optical thickness) are the only
quantities for which statistical information is currently
available at each forecast time. (Cloud cover predictions
are inherently statistical, even within a single grid column,
in the sense that a single value defines a binary probability
distribution function.) Probabilistic evaluation may prove
most valuable for testing cloud system models: since point
observations can be compared to the distribution of forecast
quantities within the entire domain, any variable may be
evaluated.

3. Optimal Behavior of Time-Averaging and
Probabilistic Model Evaluation

[12] Model evaluation techniques are most useful if they
can robustly distinguish between accurate and inaccurate
forecasts without introducing their own biases or sensitiv-
ities. In this section we investigate the performance of time-
averaging and probabilistic model evaluation techniques in
a context in which the forecasts are known to be perfect. We
construct an idealized pair of point observations and model
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forecasts from a single data set, then apply the evaluation
techniques. The ways in which evaluation results vary with
spatial and temporal scale helps us understand the limits of
the scoring techniques themselves.

3.1. Constructing ‘‘Perfect’’ Forecasts

[13] We generate a set of forecasts and pseudo-observa-
tions using a cloud system model (CSM) simulation of
summertime deep convection over the Atmospheric Radia-
tion Measurement (ARM) [Stokes and Schwartz, 1994]
Southern Great Plains (SGP) site in Oklahoma. We use
the UCLA/CSU cloud system model [Krueger, 1988; Xu
and Krueger, 1991], configured as a two-dimensional
512 km domain with horizontal grid spacing of 2 km and
35 vertical levels on a stretched grid. The model is run
continuously for 29 days while being driven by large-scale
forcing observed during the Summer 1997 Intensive Obser-
vation Period from 19 June to 17 July [Xu et al., 2002].
Snapshots of the model state are reported every 5 min. We
compare model forecasts with instantaneous values drawn
from a single CSM column near the center of the domain.
Because the pseudo-observations are drawn directly from
the population that defines the forecasts at each time step,
the forecasts are ‘‘perfect’’ by definition. If evaluation
techniques applied to this set of forecasts and observations
indicate less than perfect agreement or vary with evaluation
parameters, we have identified a weakness in the evaluation
technique.
[14] The primary cloud-measuring instrument at the

ARM SGP is the millimeter cloud radar, which is sensitive
to precipitation (large particles) as well as cloud condensate
[e.g., Mace et al., 1998b; Hogan et al., 2000]. To simulate
observations by this instrument, we compute the radar
reflectivity due to all forms of condensed water in each
model grid cell following Luo et al. [2003]; cells with
reflectivities greater than �40 dBZ are considered to
contain hydrometeors. Microphysical calculations in the
model are not performed when the mixing ratio is less than
10�6 kg/kg, so we ignore cells with lower values of mixing
ratio. Pseudo-observations are obtained by extracting the
hydrometeor occurrence profile at each time step from a
CSM grid column. We construct forecasts of domain-
averaged hydrometeor cover (HC; the fraction of points at
each level within a time-space window with reflectivity
greater than �40 dBZ) and total hydrometeor cover (THC;
the fraction of columns containing hydrometeors anywhere
in their vertical extent) by spatially averaging the CSM
fields. Because precipitation only occurs under existing
clouds, total hydrometeor cover is essentially identical to
total cloud cover.
[15] We test the assumption that clouds are randomly

distributed within the CSM domain by examining the depen-
dence of mean THC over the 29 day period to time-averaging
interval and domain size. The variation in mean THC in
domains of five different sizes (32, 64, 128, 256, and 512 km)
extracted from the CSM domain is small (in the range 0.50–
0.515). Clouds are also well sampled in time: mean THC
computed every hour using four timewindows (5 and 10min;
1 and 3 hours, with substantial overlap in the 3 hour
calculation) is almost constant (0.504 to 0.507).
[16] Evaluation methods should reflect model perfor-

mance and in particular should not depend on the size of

the model domain being evaluated. We test for insensitivity
to domain size in the sections below by examining model
skill in five domains of varying size (32, 64, 128, 256, and
512 km, as above) extracted from the entire CSM simula-
tion as a proxy for the domain of the model being tested
(i.e., the grid resolution in a global model, the domain size
of a CSM, etc.). Again, because we have constructed the
pseudo-observations by sampling the forecasts and because
the clouds are randomly distributed in space and time in the
domain, the forecasts are perfect by definition, and any
changes in forecast skill with domain size indicated by the
techniques are spurious.

3.2. Sensitivity of Time-Averaging Evaluations
to Domain Size and Averaging Time

[17] Given a set of point observations and a model of
some specified domain size, time-averaging evaluations
must first choose a time interval over which to average
the observations. We explore the degree to which measures
of agreement depend (artificially) on this value and on the
model’s domain size by constructing 20 pairs of hourly
time-series by averaging the pseudo-observations of THC
over one of the four time windows and comparing these to
averages over the five domains sizes.
[18] The correlation and standard deviation of each pair

of pseudo-observations and forecasts are compared in
Figure 1 in a diagram devised by Taylor [2001]. Each time
series of domain-averaged THC is used as a forecast vector
and the time-averaged THC in the single CSM column is
the reference (observation) vector. Forecasts and observa-
tions are said to agree perfectly when they have the same
standard deviation and a correlation of 1; this is represented
by a point at radius 1 on the abscissa. Unfortunately, the
results of our model evaluation using time-averaging de-
pend on the combination of domain size and averaging
interval, and no combination used here indicates that the
forecasts are indeed perfect, as these are by construction.
[19] One could, in principle, determine from Figure 1

either the optimal time-averaging interval (color) for a given
model domain size (letter) or the optimal domain size for a
given averaging interval. In large domains (512 km = A and
256 km = B) none of the averaging intervals are long
enough to provide a good comparison, while the optimum
averaging interval for the 128 km domain (C) lies some-
where between 1 and 3 hours. Equivalently, it appears that a
3 hour averaging interval (red) might be optimally com-
pared to a domain size between 128 and 256 km. However,
these ‘‘best matches’’ of domain size and time-averaging
intervals are misleading. Not only does the space-time
match depend on the meteorological conditions (e.g., wind
speed, presence of convection), but these particular results
may be a model artifact altogether. What Figure 1 under-
lines is that when comparing model forecasts to time-
averaged observations, any constant, arbitrarily chosen
time-averaging interval is almost certain to degrade mea-
sures of model skill by some unknowable amount.

3.3. Sensitivity of Probabilistic Evaluations to Domain
Size

[20] Rather than averaging the point observations over
time, probabilistic model evaluation begins by grouping the
observations according to classes in the forecast probability.
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Here we divide forecasts of THC into 10 classes of width
0.1 and evaluate the forecasts using reliability diagrams, the
closely related scalar Brier score and its components, and
the relative operating characteristics (ROC) diagram. (Read-
ers unfamiliar with these techniques may see Appendix A
for a brief introduction.) Reliability diagrams show the
observed frequency of occurrence of an event (y-axis) for
each class of forecast probabilities (x-axis). Forecast skill
consists of making the correct prediction at the correct time,
and reliability diagrams are useful in part because biases
and errors in timing can be clearly identified. Unbiased
forecasts have as many points (weighted by the forecast
probability distribution) below the diagonal as above. Well-
timed forecasts run parallel to the diagonal, while randomly
timed unbiased forecasts track the horizontal line (the
sample climate value, determined as the mean over the
entire time period).
[21] Reliability diagrams and forecast probabilities for

three proxy model domain sizes are shown in Figure 2.
In this example the forecast probability is the predicted
THC, while the observations are the frequency of occur-
rence of hydrometeors at the pseudo-observation point. In
this case, forecasts are accurate if about P% of the

observations made at times when the forecast is P%
cloud cover do indeed contain cloud so that the curve
tracks the diagonal. Points lying within the shaded area
contribute positively to forecast skill.
[22] Forecast probabilities (right panels) in our example

depend strongly on domain size, with larger domains
exhibiting broad distributions of THC and forecasts in
smaller domains tending to be near zero or one. (Were
the domain reduced to a single CSM column, only values
of THC of 0 or 1 would be possible.) Nonetheless, the
reliability diagrams indicate that the forecasts are skillful
at all domain sizes. Since the forecasts are perfect by
construction, we conclude that the reliability diagram is
robust to changes in the spatial scale at which it is
applied.
[23] Scalar forecast scores derived from these diagrams,

however, are not so forgiving. The Brier score (BS) can be
decomposed into three components: reliability (REL), res-
olution (RES), and uncertainty. (Appendix A provides more
details.) Perfect forecasts are traditionally defined as those
for which BS = 0, REL = 0, with resolution large and equal
to the uncertainty term so that the Brier skill score BSS = 1.
These scores appear to be unachievable in practice, however.

Figure 1. Taylor diagram comparing hourly CSM THC time series of all model domains (A = 512 km,
B = 256 km, C = 128 km, D = 64 km, E = 32 km) with pseudo-observations drawn from the CSM (see
text) using different time intervals (black = 600 s, blue = 1200 s, orange = 3600 s, red = 10800 s). Perfect
agreement lies at radius 1 on the abscissa. The forecast skill determined using time-averaging depends
strongly on the combination of averaging interval and domain size even when all the forecasts are known
to have equal (and perfect) skill. See color version of this figure in the HTML.
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Table 1 shows the score values for our perfect forecasts
made for five domain sizes. Both the Brier score and the
Brier skill score improve as domain size decreases, because
resolution (which indicates the sharpness of the forecasts)
increases while reliability remains small. Table 1 also shows

the ROC area (ROCA) for each domain size, as is derived
from ROC curves (Figure 3 shows these for three domain
sizes). ROC area for a perfect forecast is 1.0, so forecast
skill as measured by ROCA also increases as the forecast
domain gets smaller.

Figure 2. Reliability diagrams (left) and forecast probability frequency distribution (right) for perfect
forecasts, constructed by sampling a single CSM column. Results are shown for three domains extracted
from the CSM simulation (512, 128, and 32 km from top to bottom) as a proxy for the domain size of the
model being evaluated. The stippled area in the reliability diagram indicates points that contribute
positively to forecast skill. Sample size is indicated in the reliability diagrams by the size of the mark.
Forecast probabilities change dramatically with the size of the domain, but reliability diagrams show
good agreement at all sizes, indicating their robustness.
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[24] The forecasts in this example are known to be perfect,
in the sense that they are drawn directly from the same
population and with the same timing as the observations.
Nonetheless, only the reliability score is near its theoretically
perfect value, and many components of the Brier score
depend on domain size. The explanation lies in the change
of the forecast distribution of THC with domain size. The BS
measures the distance between the forecast probability and
the observation of cloud occurrence, aggregated over all
forecasts. However, observed values can only take the values
of zero or one, so the perfect Brier score can only be
achieved if the forecast values are also restricted to zero
and one. Similarly, ROCA measures the ability of the
forecast to discriminate events from nonevents, regardless
of the forecast value. For THC this distinction is again most
clear if the forecasts themselves are restricted to values of
zero and one. In our example, however, when the forecast
value of THC = 0.5 the pseudo-observations will be about
evenly split between one and zero, muddying the distinction
between event and nonevent.
[25] If the difficulty with time-averaging observations

comes in trying to match time intervals to spatial scales,
probabilistic methods are weak when scalar scores derived
from reliability diagrams are sensitive to the distribution of
forecasts. As traditionally formulated, probabilistic mea-
sures show greater skill when the forecasts are unequivo-
cable. Depending on the application, this sensitivity may
translate into a dependence on domain size.

4. Examples of Model Evaluation Using
Probabilistic Techniques

[26] We now show several examples of how models can
be evaluated using probabilistic techniques. We compare
predictions of cloud cover made by the CSM and by a
weather forecasting model to observations from a collection
of active remote sensors, then examine the skill of the CSM

in predicting cloud liquid water path as compared to passive
microwave radiometer measurements.
[27] Our main verification data set is the Active Remotely-

Sensed Cloud Locations (ARSCL) [Clothiaux et al., 2000]
data stream, which combines observations made with high-
sensitivity millimeter-wave cloud radar, micropulse lidar,
and commercial laser ceilometers to determine the presence
or absence of hydrometeors in a narrow vertical beam. The
vertical grid of the ARSCL data set is very fine; we say that
hydrometeors are observed in a model layer if ARSCL
reports hydrometeors anywhere within the layer. We ignore
the ceilometer-derived estimate of cloud base and consider
hydrometeor occurrence throughout the column.
[28] We sample the ARSCL data stream at the temporal

resolution of the model being tested (i.e., 5 min). The CSM
is forced by imposed surface fluxes and large-scale advec-
tive tendencies derived from synoptic observations; because
this forcing was determined at a spatial scale of about
500 km [Zhang et al., 2001], we examine forecasts only at
approximately commensurate scales (i.e., the full simulation
domain).

4.1. Total Hydrometeor Cover

[29] In addition to the CSM forecasts, we examine fore-
casts of total cloud cover made with the version of the
European Centre for Medium-Range Weather Forecasts

Figure 3. Relative Operating Characteristics for the comparison of the CSM forecasts of THC to the CSM
pseudo-observations for model domain sizes of 512 km (solid), 128 km (dashed), and 32 km (dot-dashed).

Table 1. Probabilistic Scores for the Idealized Comparison of

THC for Several CSM Domain Sizes Versus the CSM Pseudo-

observations

Domain
Size, km

Brier
Score

Brier
Skill Score Reliability Resolution

ROC
Area

512 0.133 0.476 0.001 0.118 0.89
256 0.100 0.601 0.004 0.154 0.94
128 0.075 0.698 0.004 0.178 0.96
64 0.057 0.772 0.003 0.196 0.98
32 0.046 0.816 0.002 0.206 0.98
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(ECMWF) operational in summer 1997. The model has an
equivalent horizontal resolution of 60 km and 31 levels in the
vertical. A prognostic cloud parameterization [Tiedtke, 1993]
predicts cloud cover at all model levels, which is converted to
total cloud cover using a maximum-random overlap assump-
tion [e.g., Morcrette and Jakob, 2000]. We compare the
ARSCL observations to the single value of total cloud cover
at the model grid point nearest the observation site.
[30] As we expect, forecasts by the CSM are substantially

better than those from the weather forecasting model. CSM
forecasts of THC are largely unbiased and show some skill
in the timing of the THC prediction, as the top panel of
Figure 4 shows. The scalar measures support this idea: the
ROC area (shown in Table 2) is 0.67, as compared with the
0.89 obtained for this domain size in our idealized experi-
ments and the value of 0.5 obtained when forecasts have the
correct probability but random timing. The ECMWF fore-
casts, on the other hand, shows a substantial negative bias
(as reflected in the upward displacement of the reliability
curve from the diagonal), with far too many forecasts of
TCC near 0. The model nonetheless exhibits some skill in
distinguishing periods of higher than average from those of
lower cloud cover: the ROC area value is 0.63, only slightly
less than that of the CSM.
[31] The various scalar forecast skill scores in Table 2

emphasize different aspects of the models’ skill in forecast-

ing THC. The Brier skill score is negative for both models,
indicating little or no skill, while the ROC area exceeds the
no-skill value of 0.5. The difference arises because ROCA
is sensitive to timing, while the Brier score weights success
according to the difference between the forecast and the
event. Thus it is possible for a forecasting system to provide
forecasts that are worse than a climatological forecast as
measured by the BS but better as measured by ROC.
Interpretation of the Brier skill score is further complicated
because BSS is computed assuming a perfect forecast
delivers a BS of zero, and as we saw in section 3 this
assumption does not hold in our application.

4.2. Vertical Cloud Structure

[32] Total hydrometeor cover provides a fairly loose
constraint on forecasts. Almost all models compute cloud
occurrence as a function of height in the atmosphere, and

Figure 4. Reliability diagrams (left) and forecast probability frequency distribution (right) comparing
forecasts of THC to the occurrence as derived from remote sensing observations. The top panel indicates
results from the CSM; the bottom from a single column extracted from the the ECMWF’s forecast model.

Table 2. Probabilistic Scores for the Comparison of CSM THC

and ECMWF TCC Forecasts With the ARSCL Derived Occur-

rence Observations

Model
Brier
Score

Brier Skill
Score Reliability Resolution

ROC
Area

CSM 0.255 �0.022 0.032 0.027 0.67
ECMWF 0.353 �0.414 0.123 0.019 0.63
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these more detailed predictions may also be tested by active
ground-based remote sensors. Figure 5 shows vertical
profiles of the mean relative frequency of hydrometeor
occurrence as observed (solid) and simulated by the CSM
(dashed). We exclude the lowest two model levels, which
fall below the lowest range gate of the cloud radar. Below
5 km the CSM forecasts agree fairly well in the mean with
the observations, while between 5 and 11 km the model
strongly overpredicts hydrometeor occurrence, and cloud
tops in the forecasts are lower than observed, leading to an
underestimation of hydrometeor occurrence above 11 km.
The model’s vertical resolution in the upper troposphere is
around 800 m, so these errors reflect shifts of cloud top by
only one or two model levels.
[33] Reliability diagrams for the model levels indicated

by horizontal lines in Figure 5 (shown in Figure 6) can
enhance our understanding of the simulation’s strengths and
weaknesses. For example, although HC forecasts are fairly
accurate in the mean at both the 2 and 11 km levels (c.f.
Figure 5), the model’s behavior is in fact quite different.
Forecasts show some skill (BSS = 0.07, ROCA = 0.71) at
2 km, primarily because the simulation correctly identifies
the many occurrences of HC < 0.1. At 12 km, however,
BSS is less than zero due to errors in the lowest HC classes,
and the ROC area value is also smaller (ROCA = 0.63),
even though the forecast probability distribution is quite
close to the distribution at 2 km.
[34] In contrast, model bias at 9 km is quite large because

the simulation overpredicts all classes of HC > 0.2. How-
ever, the simulation is somewhat skilled at discriminating
between times of greater and lesser cloudiness: much of the
reliability curve runs parallel to the diagonal, and the value
of ROCA = 0.75.
[35] Figure 7 shows probabilistic verification scores as a

function of height. Comparing Figure 7 to Figure 5 shows
that the variation of the REL with height largely reflects
forecast bias. Forecasts are skillful as measured by the Brier
score when REL < RES, as is marginally the case for a few
model levels. The value of the ROC area, however, is not
particularly sensitive to bias, and so indicates fairly good
skill (values ranging from 0.7 and 0.8) between the surface
and around 9 km.
[36] From these results we conclude that the simulation of

clouds is fairly realistic in terms of timing and low cloud
amount at 2 km, although the accuracy of forecasts of cloud
cover greater than about 0.3 is weak. This skill in timing
exists up to about the 9 km level, where it begins to degrade,
while the model also begins to overpredict the amount of
cloud when cloud is present at levels higher than 6 km. By
11 km, the simulation predicts fewer cloud-free times than
are observed and overpredicts the amount of cloud when
cloud is present and does a poor job of timing in both cases.
This level of detail is likely to be more helpful as a
diagnostic tool for model errors than even a Taylor diagram.

4.3. Liquid Water Path

[37] In principle, any quantity measured at a point whose
spatial distribution is predicted by a model can be subject to
probabilistic evaluation. We have focused on hydrometeor
cover predictions (as a surrogate for cloud cover predictions)
which might be considered zero-order measures of cloudi-
ness. More stringent tests are also possible. As we have

noted, such comparisons are restricted to models which
predict the distribution of the test quantity within the domain.
Thus, though general tests of single-column predictions (as
are available from global models) are not currently possible,
any quantity in the CSM can be evaluated.
[38] As an example we compare model predictions of

liquid water path (LWP) against retrievals from measure-
ments made with a single ground-based microwave radi-
ometer (MWR) at the ARM SGP site [Liljegren, 1994].
CSM spatial distributions of LWP at each model time are
converted into probabilistic forecasts by setting a threshold
and counting the number of columns which satisfy an
inequality. Figure 8 shows reliability diagrams for the
conditions LWP > 0.05 kg � m�2 and LWP > 0.1 kg �
m�2. Forecasts of thin liquid water clouds are poor: the
model predicts less than half of the observed cases and does
so at the wrong times as indicated by the reliability diagram
and a ROCA of 0.54. However, when the LWP threshold is
doubled, the simulation bias decreases in magnitude and
changes sign, and both BSS (0.004) and ROCA (0.64)
indicate some model skill.
[39] These results most likely reflect the simulation’s

inability to generate boundary layer clouds including shal-
low cumulus. The CSM’s subgrid scale cloud parameteri-
zation was inactive in these runs, and the model’s spatial
resolution is 2 km; such ‘‘coarse’’-resolution CSMs are
known to have difficulty simulating small clouds under
these circumstances [e.g., Petch et al., 2002].

5. Outstanding Issues

5.1. Utility of Scalar Scores

[40] Though the scalar probabilistic evaluation scores have
formal definitions of perfection, these appear to be unachiev-
able, based on section 3, due to sampling errors and the
sensitivity to factors like domain size. This makes it hard to
evaluate success in a general and quantitative way when the
scores are computed for real clouds. It would be useful if we

Figure 5. Mean observed (solid) and model (dashed)
hydrometeor cover as a function of height for the entire
analysis period (19 June to 17 July 1997). The horizontal
lines mark the levels for which further analysis is carried out
in Figure 6.
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could provide a context-dependent estimate of the maximally
achievable value for each of the score measures.
[41] One possibility is to introduce additional measure-

ments. As an example we show total cloud cover (TCC)
retrievals from the GOES-8 satellite [Minnis et al., 1995]
averaged over an area comparable to the model domain
(5.5 � 5.5 deg) centered on the ARM SGP site. Reliability

diagrams treating the satellite retrievals as ‘‘forecasts’’ and
ARSCL point observations as ‘‘verification’’ are shown in
Figure 9. The satellite sees slightly less cloud than does
ARSCL, but overall agreement is quite good (BS = 0.17,
BSS = 0.33, and ROCA = 0.85). When perfect forecasts are
unavailable one could use these scores as a proxy, since
undoubtedly one would be satisfied with a model prediction

Figure 6. Reliability diagrams (left) and forecast probability frequency distribution (right) for the
comparison of the CSM forecasts of hydrometeor cover to the ARSCL-derived occurrence observations
at selected model levels. The model levels shown are near 12 km (top), 9 km (middle), and 2 km
(bottom).
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Figure 7. Probabilistic forecast scores for the comparison of CSM-predicted hydrometeor cover to the
ARSCL-derived occurrence observations as a function of height. The measures shown are ROCA (solid),
REL (dashed), RES (triple-dot-dashed), and UNC (dot-dashed).

Figure 8. Reliability diagram (left) and forecast probability frequency distribution (right) for the
comparison of CSM LWP to MWR derived observations.
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that achieves this degree of skill. On the other hand, it is not
clear from this comparison what skill scores might be
expected in perfect layer-by-layer comparisons. (Ironically,
forecasts of THC can be tested directly against satellite data,
obviating the need for probabilistic evaluation techniques.)
However, probabilistic evaluation is useful in a relative
sense even in the absence of exact targets, since it provides
quantitative guidance when comparing models to each other
or when assessing the impact of changes to a model’s
formulation. Probabilistic evaluation might also be useful
in comparing ground-based and satellite measurements.

5.2. Prospects

[42] Though we have concentrated on their use for model
evaluation, probabilistic techniques may also be valuable
when comparing different measurements of the same quan-
tity. For instance, comparing satellite retrieved cloud and
precipitation fields to point observations on the ground is
notoriously difficult due to both navigation and representa-
tiveness problems, and in data-rich situations these may be
avoided using probabilistic evaluation.
[43] Probabilistic evaluation techniques provide useful

quantitative information about the performance of cloud
system models. Many issues remain, including the deriva-
tion of scalar scores whose performance is better understood
and which do not depend on the details of the model
configuration. The potential of probabilistic techniques is
in the evaluation of a wide range of model predictions, and
it is in those applications that further strengths and weak-
nesses of the method will emerge.

Appendix A

A1. Brier Score

[44] The Brier score [e.g, Brier, 1950; Wilks, 1995] is
defined as

BS ¼ 1

n

Xn

i¼1

fi � oið Þ2; ðA1Þ

where fi is the forecast probability (i.e., total hydrometeor
cover) and oi indicates the occurrence of the forecast event

(i.e., oi = 0 in case of no hydrometeor at the radar site and
oi = 1 otherwise). The summation is over all forecasts issued
(i.e., over all hourly CSM values). The Brier score of a
perfect set of forecasts is 0.
[45] The Brier score may be decomposed into three

components [Wilks, 1995] as

BS ¼ 1

n

XC

i¼1

Ni fi � oið Þ2� 1

n

XC

i¼1

Ni oi � oð Þ2 þ o 1� oð Þ: ðA2Þ

The three terms of this equations are called reliability
(REL), resolution (RES), and uncertainty (UNC). The
summation in the first two terms of equation (A2) is over
the number of forecast classes (C). Ni is the number of
forecasts falling into each class, oi is the relative frequency
of occurrence of the event in forecast class i, and o the
overall observed relative frequency of occurrence of the
event. Better forecasts have smaller values of BS, which
may arise though lower values of reliability or increases in
resolution. The uncertainty term in equation (A2) is a
function of the observations only.
[46] The decomposed BS is closely related to the reliability

diagram shown in Figure 2, in that RELmeasures the distance
of the reliability curve from the diagonal, while RES mea-
sures the distance from the horizontal line indicating the
sample climate. Note that distances are calculated as averages
weighted by the number of forecasts falling into each forecast
class, Ni. Hence similar looking reliability curves may lead to
different values of REL and RES and hence BS, if the
distribution of forecast values changes, as in Figure 2.
[47] The Brier skill score BSS is defined as

BSS ¼ BS � BSclimate

0� BSclimate
; ðA3Þ

where BSclimate is the Brier score of a constant forecast using
the sample mean value (climate), and the zero appears in the
denominator as the perfect BS. The perfect value for this
score is BSS = 1.

A2. ROC

[48] Another common measure used in the evaluation of
probabilistic forecast is the Relative Operating Character-

Figure 9. Reliability diagram (left) and forecast probability frequency distribution (right) for the
comparison of satellite-derived total cloud cover to the ARSCL-derived occurrence observations. The
averaging area is 5.5 � 5.5 deg, similar to the largest CSM domain size.
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istics (ROC) curve [e.g., Mason, 1982; Harvey et al., 1992].
Here the probability of detection (POD) and false alarm rate
(FAR) or probability of false detection for categorical
forecasts are compared to each other. A number of these
categorical forecasts are derived from the forecast probabil-
ities by cycling through all forecast categories, C, and
considering forecasts with a higher probability than the
lower boundary of forecast class Ci as forecasts of the event
and all those below as forecasts of the nonevent. This leads
to C + 1 pairs of POD and FAR, which are then plotted as a
curve. The curves for the three domain sizes used before are
shown in Figure 3. A scalar measure indicating the forecast
quality can be derived from those curves, by integrating
over the area underneath the curve, often referred to as the
ROC area (ROCA). It can be shown [e.g., Mason, 1982]
that in this measure skillful forecasts are identified by
ROCA > 0.5, while the perfect forecast has ROCA = 1.
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